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Abstract: Topological Data Analysis (‘TDA’) has become a vibrant and quickly developing field in recent years, 

providing topology-enhanced data processing and Machine Learning (‘ML’) applications. Due to the novelty 

of the field, as well as the dissimilarity between the mathematics behind the classical ML and TDA, it might 

be complicated for a field newcomer to assess the feasibility of the approaches proposed by TDA and the 

relevancy of the possible applications. The current paper aims to provide an overview of the recent 

developments that relate to persistent homology, a part of the mathematical machinery behind the TDA, with 

a particular focus on applied sciences. We consider multiple areas, such as physics, healthcare, material 

sciences, and others, examining the recent developments in the field. The resulting summary of this paper 

could be used by field experts to expand their knowledge on recent persistent homology applications, while 

field newcomers could assess the applicability of this TDA approach for their research. We also point out 

some of the current restrictions on the use of persistent homology, as well as potential development trajectories 

that might be useful to the whole field.  

1 INTRODUCTION 

Artificial Intelligence (‘AI’) is a fruitful and 

flourishing area that focuses on the development of 

algorithms that are capable of replicating human 

behavior. An important constituent of this area, which 

encompasses a variety of mathematical instruments 

developed for capturing, formalization, and 

optimization of methods that can help in the aims of 

AI, called Machine Learning (‘ML’) 

Linear algebra, statistics, and probability theory, 

as well as functional analysis, comprise the list of the 

most widely-used mathematical instruments for 

Machine Learning. At the same time, more 

sophisticated mathematical machinery receives ever-

growing attention from ML specialists [1]. Algebraic 

topology could be considered as one of the most 

important of such ‘mathematical newcomers’ to the 

field. The impact of topology on the current ML scene 

led to the emergence of a whole new area called 

Topological Data Analysis. 

Algebraic topology raises basic questions about 

the shape of the object and is especially interested in 

the shape features that are invariant under 

deformation. A hole in S2 sphere or torus is a typical 

example of such an invariant since it does not 

diminish up until we ‘cut’ the figure. 

2 FUNDAMENTALS OF 

PERSISTENT HOMOLOGY 

Informally, persistent homology (‘PH’) allows us to 

discover which features of the data set (called ‘point 

cloud’) are time-invariant. The latter notion gives 

researchers the right means to assess some constant 

geometrical (or, it is better to say, ‘topological’) 

features of the set. Below we give a more elaborate 

introduction to this concept. 

2.1 Complexes, Filtrations and 

Persistence 

A simplicial complex could be defined simply as a set 

consisting of points, lines, and n-order polytopes of 
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some point cloud defined on a manifold. The 

dimensionality of the simplex is defined through its 

vertices, i.e., a k-simplex is represented by a convex 

hull with k+1 independent vertices [2]. 

Now, we could  induce a family of simplicial 

complexes out of the point cloud X. This family 

should be ordered by increasing inclusion, such that 

complex Kn is included in Kn+1 and so on. As an 

analog to this idea, one can refer to the notion of 

filtration used in measure theory and probability 

theory [3]. 

One now could ask a question on how long a given 

structure, formed by the simplicial complex at step n, 

is preserved in the dataset throughout the filtration. In 

this case, we can define the birth and the death time 

of a given feature and use this information to describe 

the dataset which is given. The persistent homology 

is then just a way to quantify the geometrical features 

that are preserved at step n. A visual explanation of 

these concepts can be found below in Figure 1 and 

Figure 2. 

Figure 1: Different types of geometrical structures that 

possess different simplicial descriptions. 

Figures a) and b) are the 1-simplex and 2-

simplexes, respectively.   

2.2 Persistent Homology as an Input 

Before starting the discussion on the use of PH in 

Machine Learning, we should first consider how one 

could extract some meaningful information from it. 

By looking at the objects c) - f) in Figure 1, one could 

say that a 1-dim hole starts its existence at stage c) 

and lives up until stage e).  

There are a number of ways to formalize and 

visualize this idea. Probably, one of the most common 

is the persistence diagrams akin to the one shown in 

Figure 2. On the diagram, each point represents a 

certain topological feature native to the point cloud 

analyzed (e.g., a hole). The coordinates on the XY 

plane of each point encode its birth and death times. 

Another popular way of showing this information is a 

barcode diagram, where instead of points, we use 

lines, and the length of each line denotes the lifetime 

of the feature. This information can be transformed 

[4] in order to get the persistence images, which can

then be fed to the algorithm. Another option is to

derive statistical information from the barcodes or

diagrams, like the mean of the death time or average 

persistence length (which is death time - birth time). 

Figure 2: A persistence diagram of the random 

2-dimensional point cloud. Features tracked in each

dimension are shown in blue for H0 and orange for H1.

Normally, features that have a longer barcode 

(those located far from the diagonal on the diagram) 

describe features whose associated simplicial 

complexes are stable under various deformations (i.e., 

time-invariant from the filtration point of view). At 

the same  time, those that die quickly tend to be 

treated as noise. The latter statement might be too 

expensive for areas where short-time transformations 

are important, such as chemistry, biology, drug 

design, physics, etc. 

In this way, PH is able to provide two important 

insights about the data: does the data (as a point 

cloud) have a meaningful (useful) inner geometry and 

how to extract it; does the data (as a particular 

exemplar in the dataset) can be characterized based 

on its topological or geometrical features. 

3 PERSISTENT HOMOLOGY IN 

MACHINE LEARNING 

The opportunities for the use of PH information for 

Machine Learning lies in the concept of persistence 

of certain features of the dataset or its parts. This 

allows the characterization of the intrinsic 

geometrical features of the data available for the 

training. It becomes especially useful in cases when 

the geometry of the features might be put to use to 

crack the targeted problem. For example, in image 

recognition, where data is inherently 

geometrical [5-6].  

At the same time, numerous data types can be 

transformed in a way that produces some unique 

geometry that corresponds to the data. The use of 
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Takens’s theorem [7] to reconstruct the dynamical 

system behavior from the time series is one of the 

classic examples of such an approach. 

Following this mindset, a great number of results 

were produced with the use of PH in Machine 

Learning for time series analysis [8-9], 

(computational) biology and chemistry [10-11], and 

even Natural Language Processing [12]. The general 

idea behind the scenes is to pre-process data using the 

PH-driven transformations and derive some 

characteristics of the objects (or the whole point 

cloud). The latter is then used for Machine Learning 

models. As a basic example, one can use the data on 

molecules or some materials' structure and apply PH 

analysis to obtain topological features of the 

molecules or materials and use this information for 

labels in classification.    

A comparatively high area of applications of PH 

comes at a cost: most implementations are 

adjustments of some core ideas, which are hard to 

categorize and track; non-mathematicians might find 

it hard to cope with the nuances of these adjustments; 

the implementation of PH for Machine Learning 

requires a rather large amount of data preprocessing, 

which might create complications for experts outside 

of the industry. All these aspects related to the use of 

PH create a comparatively high ‘entrance level’, 

which leads to the low productivity of research. 

Below, we present an overview of the latest 

applications of persistent homology in Machine 

Learning in areas such as healthcare, physics, finance, 

and more. This coverage is intended to identify 

existing problems that are combated via PH, as well 

as the main techniques used during the problem-

solving process. 

3.2 Chemistry, Biology and Healthcare 

This part is dedicated to the review of PH applications 

in Machine Learning problems that relate to Biology 

or Chemistry, including such practical applications as 

drug design and, generally, Healthcare. 

As mentioned before, PH is a great tool when it 

comes to geometrically-enhanced data, such as 

images. A great example of how PH could be used for 

Magnetic Resonance Images (‘MRI’) analysis was 

proposed in [13]. The authors have proposed a DTA 

framework, which includes Dynamic Hierarchical 

Network Construction, Dynamic Topology 

Quantification, and Topological Pattern Analysis. PH 

is used in multiple steps aiming to provide a 

topological description of the point cloud, which 

represents the MRI results. This description is then 

transformed and used along with a Balanced Random 

Forest (BRF) and Cost-effective Support Vector 

Machine (CE-SVM). The results of the detection of 

spatial patterns of multifocal lesions on clinical MRI 

were then compared to the existing approaches, 

showing a feasible increase in metrics. A great feature 

of the work is the authors’ intention to additionally 

optimize their algorithm. The corresponding part 

might be used by other authors in their research.  

Another Healthcare-related application can be 

found in [14]. Here, authors compare PH-induced 

metrics, such as (Slope of the) Betty Number Plot 

(BNP), BNP AUC, Mean of the area of persistent 

landscapes for components/holes, and others, with 

graph-induced metrics from the statistical point of 

view. In addition, the authors apply SVM for the 

classification comparison. The paper states that PH-

induced metrics outperform their peers for the 

connectivity classification tasks, defined for Autism 

spectrum disorder conditions.  

In [15], the authors use PH to compute coarsened 

topological features of atoms. After receiving the 

corresponding diagrams, they use Gaussian kernels 

for imagery transformation and then feed this 

information, along with other data, to a custom 

Neural Network in order to capture the protein 

dynamic information. The interested reader is 

strongly advised to look at the GitHub page provided 

by the authors to test the proposed approach. 

As was shown in [16], functional cell description 

can be used in combination with PH to shed light on 

ionizing radiation-induced dysfunction in vascular 

endothelial cells. Akin to the approaches discussed 

before, the authors fuse the PH results with other data 

to get the molecular signatures of vascular 

dysfunction, which are then fed to a specific GANs-

based algorithm to produce the results.   

3.3 Physics and Geoscience 

Persistence Homology receives ever-growing 

appreciation in material sciences due to its ability to 

work with shapes in a meaningful and deep way. At 

the same time, glass properties and structure is a long-

lasting research field in material sciences, so there is 

no wonder that PH has found multiple applications in 

this area. A profound overview of this topic was 

published this year in [17].  

Another research dedicated to the structural 

problem can be found in [18]. The paper discusses PH 

as a tool to analyze the structure of porous materials 

and Machine Learning approaches that can be used 

based on the results of PH in order to generate more 

efficient materials and model them in a more 

reasonable way. 
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A similar approach was followed in [19], here, the 

fuse of PH and Machine Learning is rather sequential 

than simultaneous. The paper discusses the filler 

morphology and how their properties can be analyzed 

using the combination of the aforementioned tools. 

Developing the engineering trajectory of our 

discussion, an interesting paper covering slugging 

flow detection via the PH-induced techniques should 

be mentioned [20]. After Takens’ theorem-based 

relevant time series transformation, authors use PH to 

track topological features of the obtained dynamical 

systems, This information is then used for the 

classification of the flow regimes. 

An interesting example of how PH can be used 

even in the case of transfer learning is presented in 

[21]. In this paper, the authors examine the problem 

of chatter detection. In order to implement PH-

induced metrics, authors have used a series of data 

transformation techniques, including FFT, which is a 

rare guest in PH and Machine Learning composition. 

The latter was presented by the use of SVM, logistic 

regression, random forests, and gradient boosting 

classification approaches. 

In [22], authors implement another version of PH 

called zigzag persistence for crop insurance in 

agriculture. The key idea behind this concept is an 

ability to index the dynamics of the topological 

feature through their lifetime, providing a more 

comprehensive view of the point cloud structure. This 

approach was paired with the LSTM network, 

showing the reduction in the mean and variance of 

prediction error. 

The sky is not the limit for PH applications. In 

[23], Large Scale Structures (‘LSS’) that refer to the 

patterns of galaxies or other objects of the universe 

were studied with the use of PH-related methods. 

More precisely, Copernicus Complexio's warm and 

cold dark matter models (‘WDM’ and ‘CDM’) were 

analyzed. It was shown that it is possible to develop a 

statistics-based approach, which uses the results 

obtained from the PH assessment, capable of 

distinguishing between the WDM and CDM. 

Moreover, the authors show that the scale at which 

differences occur is also trackable, which is 

especially important when dealing with LSS. 

3.4 Selected Overview Papers 

This section is intended to cover some important 

overview papers that came to light this year from each 

of the areas discussed above. 

Chemistry experts can refer to [24] in order to 

examine the existing discussion on Materials 

Chemistry and how PH could be used for this 

purpose. Biology and drug discovery fields have 

recognized PH applications in [25-26], where a 

combination of Deep Learning and PH has become a 

major topic.  

Healthcare topics were covered in [27-28], 

focusing on cancer detection, which is an important 

topic in AI-aided Healthcare and Precision Medicine. 

4 DISCUSSION AND FUTURE 

WORKS 

Persistent homology comprise a promising part of the 

Topological Data Analysis mainstream. As we have 

seen through the overview of the newly published 

papers dedicated to this approach, PH applications are 

mainly related to problems that have a geometrical 

nature. Biology and chemistry areas, including drug 

discovery as a joint field, tend to implement PH for 

cases where the problem is formulated around 

cellular, molecular or atomic structure, indicating the 

use of PH for mainly pre-processing purposes, 

deriving the characteristics of the objects being 

analyzed. Healthcare applications are, in turn, centred 

around image-driven data. PH methods tend to 

alleviate the same pain points, allowing a more 

meaningful approach for data extraction before the 

actual use of Machine Learning algorithms. At the 

same time, physics and material science enjoy PH in 

a similar way biology and chemistry do. These areas 

focus on geometrically-enhanced data to solve the 

emerging structural or dynamic problems 

implementing PH for data analysis as a part of the 

Machine Learning pipeline.        

PH is rarely seen as a self-sufficient approach and 

tends to require an additional algorithmic pipeline. 

This implies an increasing production complexity for 

practical applications. Thus, a solution that 

automatically incorporates the PH-induced metrics 

and calculations would be highly appreciated by 

scientific and industry participants.   

PH tends to be actively used for tasks that involve 

classification and seems to be flexible enough to be 

implemented with a variety of them. It’s important to 

state that PH is used actively in combination with 

Deep Learning and generally Neural Networks-

driven algorithms. Given an ever-increasing amount 

of data available, this is rather a good sign for PH, 

indicating a future development potential. At the 

same time, the scope of questions PH is capable of 

covering is not yet well-defined. For example, there 

is a limited conversation on how PH can be 

implemented for practical aspects of Meta Learning, 
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e.g., for synthetic data generation. It can be stated that

expanded adoption of PH requires the development of

new ways of data ‘ geometrization’, combining

statistics (flash and blood of Machine Learning) and

geometry/topology together. At the same time, the

current paper covers most of the PH applications

published throughout the year 2022, which poses a

question on certain applications asymmetry compared

to other areas, e.g., recommendation systems for

marketing or Natural Language Processing for chat-

bots.

In addition, there is a rather limited (if any) 

amount of self-sustainable PH data analysis pipelines 

that are capable of providing data insights. This 

brings another question of whether this type of 

algorithm can be formulated in an efficient and useful 

way.   

We thus consider further development of the 

applicability analysis of PH. We will especially focus 

on the applications that relate to image processing 

problems, as well as synthetic data generation tasks, 

which are of great importance in the case of 

imbalanced datasets for both structured and 

unstructured data cases.    

5 CONCLUSION 

In this paper we have discussed the recent 

applications of the persistent homology-driven 

analysis in the context of Machine Learning. The 

overview shows a wide range of applicability of such 

methods. At the same time, it can be suggested that 

the place of such methods is still comparatively 

narrow, being mostly a preprocessing technique. 

Interestingly, despite the existence of topology-

inspired neural networks [29], none of the recent PH 

applications implements such architectural solutions. 

Clearly, as stated in the previous section, the ease of 

use of PH techniques can and should be developed 

further. Yet, the absence of such a combination 

cannot be solely derived from this fact, which raises 

another important question on the optimal fusion of 

topological preprocessing and architectural solutions.   

The current paper is limited in details and 

comparison of non-topological and topological 

preprocessing techniques, which is a valuable 

research topic we are hoping to cover in the future. In 

addition, we sincerely encourage our readers to 

acquaint themselves with the list of references 

provided below in order to investigate in greater 

detail whether PH methods can be used for their 

current or future research.     
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